0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBCN nanotube brushes have been obtained by the high temperature reaction of amorphous carbon nanotube (a-CNT) brushes with a mixture of boric acid and urea. The a-CNT brushes themselves were obtained by the pyrolysis of glucose in a polycarbonate membrane. The BCN nanotubes have been characterized by EELS, XPS, electron microscopy, Raman spectroscopy and other techniques. The composition of these nanotubes is found to be BC4N. The nanotubes, which are stable up to 900 °C, are insulating and nonmagnetic. They exhibit a selective uptake of CO2 up to 23.5 wt%. In order to understand the structure and properties, we have carried out first-principles density functional theory based calculations on (6,0), (6,6) and (8,0) nanotubes with the composition BC4N. While (8,0) BC4N nanotubes exhibit a semiconducting gap, the (6,0) BC4N nanotube remains metallic if ordered BN bonds are present in all the six-membered rings. The (6,6) BC4N nanotubes, however, exhibit a small semiconducting gap unlike the carbon nanotubes. The most stable structure is predicted to be the one where BN3 and NB3 units connected by a B–N bond are present in the graphite matrix, the structure with ordered B–N bonds in the six-membered rings of graphite being less stable. In the former structure, (6,0) nanotubes also exhibit a gap. The calculations predict BC4N nanotubes to be overall nonmagnetic, as is indeed observed.
Kalyan Raidongia, Dinesh Jagadeesan, Mousumi Upadhyay-Kahaly, Umesh V. Waghmare, Swapan K. Pati, Muthusamy Eswaramoorthy, Cnr Rao (2007). Synthesis, structure and properties of homogeneous BC<sub>4</sub>N nanotubes. Journal of Materials Chemistry, 18(1), pp. 83-90, DOI: 10.1039/b712472d.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Journal of Materials Chemistry
DOI
10.1039/b712472d
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access