0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSingle-source molecular precursors were used to synthesize II-VI compound semiconductor nanowires for the first time. Cadmium sulfide and zinc sulfide nanowires were prepared using cadmium diethyldithiocarbamate, Cd(S2CNEt2)2, and zinc diethyldithiocarbamate, Zn(S2CNEt2)2, respectively, as precursors in a gold nanocluster-catalyzed vapor-liquid-solid growth process. High-resolution transmission electron microscopy studies show that the CdS and ZnS nanowires are single-crystal wurtzite structures with stoichiometric compositions. In addition, photoluminescence measurements demonstrate that these nanowires exhibit high-quality optical properties. The applicability of our approach to the synthesis of other compound and alloy semiconductors nanowires as well as nanowire heterostructures of these materials is discussed.
Carl J. Barrelet, Yue Wu, David C. Bell, Charles M. Lieber (2003). Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors. Journal of the American Chemical Society, 125(38), pp. 11498-11499, DOI: 10.1021/ja036990g.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2003
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of the American Chemical Society
DOI
10.1021/ja036990g
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access