0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Janus particles are widely sought for applications related to colloidal assembly, stabilization of emulsions, and development of active colloids, among others. Here we report a versatile route to the fabrication of well‐controlled Janus particles by simply breaking the symmetry of spherical particles with swelling. When a polystyrene (PS) sphere covered by a rigid shell made of silica or polydopamine is exposed to a good solvent for PS, a gradually increased pressure will be created inside the shell. If the pressure becomes high enough to poke a hole in the shell, the spherical symmetry will break while pushing out the swollen PS through the opening to generate a Janus particle comprised of two distinct components. One of the components is made of PS and its size is controlled by the extent of swelling. The other component is comprised of the rigid shell and remaining PS, with its overall diameter determined by the original PS sphere and the rigid shell. This solution‐based route holds promises for the scalable production of complex Janus particles with a variety of compositions and in large quantities.
Jichuan Qiu, Zitao Chen, Miaofang Chi, Younan Xia (2021). Swelling‐Induced Symmetry Breaking: A Versatile Approach to the Scalable Production of Colloidal Particles with a Janus Structure. , 60(23), DOI: https://doi.org/10.1002/anie.202102164.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/anie.202102164
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access