0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy.
Bo Pang, Yongfeng Zhao, Hannah Luehmann, Xuan Yang, Lisa Detering, Meng You, Chao Zhang, Lei Zhang, Zhi-Yuan Li, Qiushi Ren, Yongjian Liu, Younan Xia (2016). <sup>64</sup>Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment. , 10(3), DOI: https://doi.org/10.1021/acsnano.5b07968.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.5b07968
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access