0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCreating segregated structure within composites can significantly improve electrical conductivity but usually compromises mechanical properties. In this contribution, we introduced a straightforward and universal method to fabricate segregated rubber composites with a rare integration of high electrical conductivity and mechanical robustness by utilizing an inverse vulcanized copolymer (SP) as an adhesive to bind the segregated domains. Specifically, sulfur-crosslinked butadiene styrene rubber (SBR) granules were mixed with SP and carbon nanotubes (CNTs), followed by compression molding. CNTs embedded within SP are strategically dispersed along the boundaries of SBR granules, and the reaction of SP with SBR granules creates covalent bonding among the segregated domains and increases their crosslinking density. The segregated skeleton constituted by highly interconnected CNTs is robust, which imparts the composites with high electrical conductivity that is stable upon deformations and is able to heal after damage. In addition, the rigid segregated skeleton preferentially ruptures to dissipate enormous energy, and the cohesive interphase facilitates chain finite extensibility in the highly crosslinked segregated domains, resulting in remarkable enhancements on the tensile strength and modulus of the composites. The universality of this strategy is further demonstrated by using ground waste tyre rubber as matrix and boron nitride sheets as filler.
Shu Wang, Zhenghai Tang, Yilin Xiao, Dong Wang, Guo Baochun, Liqun Zhang (2024). Sulfur Co-polymer as a Universal Adhesive to Construct Segregated Structure in Cross-linked Rubber toward Improved Conductive and Mechanical Properties. Composites Science and Technology, pp. 110964-110964, DOI: 10.1016/j.compscitech.2024.110964.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Composites Science and Technology
DOI
10.1016/j.compscitech.2024.110964
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access