0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Oceans are crucial to human survival, providing natural resources and most of the global oxygen supply, and are responsible for a large portion of worldwide economic development. Although it is widely considered a silent world, the sea is filled with natural sounds generated by marine life and geological processes. Man-made underwater sounds, such as active sonars, maritime traffic, and offshore oil and mineral exploration, have significantly affected underwater soundscapes and species. In this work, we report on a joint optical fiber-based communication and sensing technology aiming to reduce noise pollution in the sea while providing connectivity simultaneously with a variety of underwater applications. The designed multifunctional fiber-based system enables two-way data transfer, monitoring marine life and ship movement near the deployed fiber at the sea bottom and sensing temperature. The deployed fiber is equally harnessed to transfer energy that the internet of underwater things (IoUTs) devices can harvest. The reported approach significantly reduces the costs and effects of monitoring marine ecosystems while ensuring data transfer and ocean monitoring applications and providing continuous power for submerged IoUT devices.
Yujian Guo, Juan M. Marin, Islam Ashry, Abderrahmen Trichili, Michelle-Nicole Havlik, Tien Khee Ng, Carlos M. Duarte, Boon S. Ooi (2023). Submarine optical fiber communication provides an unrealized deep-sea observation network. , 13(1), DOI: https://doi.org/10.1038/s41598-023-42748-0.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41598-023-42748-0
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access