Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Study on Support Vector Machine-Based Fault Detection in Tennessee Eastman Process

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

Study on Support Vector Machine-Based Fault Detection in Tennessee Eastman Process

0 Datasets

0 Files

English
2014
Abstract and Applied Analysis
Vol 2014
DOI: 10.1155/2014/836895

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Shen Yin
Xin Gao
Hamid Reza Karimi
+1 more

Abstract

This paper investigates the proficiency of support vector machine (SVM) using datasets generated by Tennessee Eastman process simulation for fault detection. Due to its excellent performance in generalization, the classification performance of SVM is satisfactory. SVM algorithm combined with kernel function has the nonlinear attribute and can better handle the case where samples and attributes are massive. In addition, with forehand optimizing the parameters using the cross-validation technique, SVM can produce high accuracy in fault detection. Therefore, there is no need to deal with original data or refer to other algorithms, making the classification problem simple to handle. In order to further illustrate the efficiency, an industrial benchmark of Tennessee Eastman (TE) process is utilized with the SVM algorithm and PLS algorithm, respectively. By comparing the indices of detection performance, the SVM technique shows superior fault detection ability to the PLS algorithm.

How to cite this publication

Shen Yin, Xin Gao, Hamid Reza Karimi, Xiangping Zhu (2014). Study on Support Vector Machine-Based Fault Detection in Tennessee Eastman Process. Abstract and Applied Analysis, 2014, pp. 1-8, DOI: 10.1155/2014/836895.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Abstract and Applied Analysis

DOI

10.1155/2014/836895

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access