0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUniversity of Vienna
The well-ordered aluminum oxide film formed by oxidation of the NiAl(110) surface is the most intensely studied metal surface oxide, but its structure was previously unknown. We determined the structure by extensive ab initio modeling and scanning tunneling microscopy experiments. Because the topmost aluminum atoms are pyramidally and tetrahedrally coordinated, the surface is different from all Al2O3 bulk phases. The film is a wide-gap insulator, although the overall stoichiometry of the film is not Al2O3 but Al10O13. We propose that the same building blocks can be found on the surfaces of bulk oxides, such as the reduced corundum (0001) surface.
Kresse Georg, Michael Schmid, E. Napetschnig, Maxim Shishkin, Lukas Köhler, П. Варга (2005). Structure of the Ultrathin Aluminum Oxide Film on NiAl(110). Science, 308(5727), pp. 1440-1442, DOI: 10.1126/science.1107783.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2005
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Science
DOI
10.1126/science.1107783
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access