0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Conductive hydrogels possess a remarkable potential for applications in soft electronics and robotics, owing to their unique combination of high electrical conductivity, stretchability, and impressive self-healing capabilities. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in Nature, in this study we successfully fabricate a novel type of strong and tough conductive hydrogel through self-assembly-induced bridge crosslinking of MgB 2 nanosheets and polyvinyl alcohol (PVA) hydrogels. By combining the micro- to nano-level hierarchical lamellar structures of the PVA hydrogels with the robust molecular-level B-O covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength of 8.58 to 32.7 MPa and a high toughness of 27.56 to 123.3 MJ/m 3 . Moreover, the hydrogel demonstrates exceptional sensitivity (with a response/relaxation time of 20 ms and a detection lower limit of ~1Pa) under external deformation, due to its nanoscale MgB 2 nanosheets/PVA lamellar structure and extremely low compressive modulus. These unique characteristics enable the conductive hydrogel to exhibit superior performance in advanced soft sensing applications, particularly in non-contact speaking detection. This study represents a major breakthrough, introducing a new class of conductive hydrogel that integrates exceptional strength, toughness, and sensitivity, thereby opening up exciting possibilities for the development of high-performance conductive hydrogels.
Tian Li, Haobo Qi, Yijing Zhao, Punit Kumar, Xinyu Dong, Xiao Guo, Miao Zhao, Xinwei Li, Robert O. Ritchie, Wei Zhai (2023). Strong and Tough Conductive Hydrogel with High Sensitivity via Self-Assembly-Induced Bridge Crosslinking. , DOI: https://doi.org/10.21203/rs.3.rs-2749647/v2.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.21203/rs.3.rs-2749647/v2
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access