RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill

0 Datasets

0 Files

en
2022
Vol 2 (4)
Vol. 2
DOI: 10.1016/j.fmre.2022.01.003

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yang Zou
Yansong Gai
Puchuan Tan
+10 more

Abstract

Respiratory sensing provides a simple, non-invasive, and efficient way for medical diagnosis and health monitoring, but it relies on sensors that are conformal, accurate, durable, and sustainable working. Here, a stretchable, multichannel respiratory sensor inspired by the structure of shark gill cleft is reported. The bionic shark gill structure can convert transverse elastic deformation into longitudinal elastic deformation during stretching. Combining the optimized bionic shark gill structure with the piezoelectric and the triboelectric effect, the bionic shark gill respiratory sensor (BSG-RS) can produce a graded electrical response to different tensile strains. Based on this feature, BSG-RS can simultaneously monitor the breathing rate and breathing depth of the human body accurately, and realize the effective recognition of the different human body's breathing state under the supporting software. With good stretchability, wearability, accuracy, and long-term stability (50,000 cycles), BSG-RS is expected to be applied as self-powered smart wearables for mobile medical diagnostic analysis in the future.

How to cite this publication

Yang Zou, Yansong Gai, Puchuan Tan, Dongjie Jiang, Xuecheng Qu, Jiangtao Xue, Han Ouyang, Bojing Shi, Linlin Li, Dan Luo, Yulin Deng, Zhou Li, Zhong Lin Wang (2022). Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. , 2(4), DOI: https://doi.org/10.1016/j.fmre.2022.01.003.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

13

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.fmre.2022.01.003

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration