Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Strength Model for Debonding Failure in RC Beams Flexurally Strengthened with NSM FRP and Anchored with FRP U-Jackets

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Strength Model for Debonding Failure in RC Beams Flexurally Strengthened with NSM FRP and Anchored with FRP U-Jackets

0 Datasets

0 Files

en
2023
Vol 27 (5)
Vol. 27
DOI: 10.1061/jccof2.cceng-4215

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Shi Shun Zhang
Shi Shun Zhang

Institution not specified

Verified
Ke Yan
F. L. Shi
Shi Shun Zhang
+2 more

Abstract

The flexural performance of reinforced concrete (RC) beams could be effectively improved by applying a near-surface mounted (NSM) fiber-reinforced polymer (FRP) at the beam soffit. However, such NSM FRP flexurally-strengthened beams frequently failed due to FRP debonding, which limited the full utilization of the FRP strength. In some experimental studies, FRP U-jackets have been used as the anchorage to mitigate or prevent debonding failures in NSM FRP flexurally-strengthened beams. These studies showed excellent anchoring performance of the FRP U-jackets. The authors recently developed a finite-element (FE) approach that could accurately predict the behavior of RC beams that had been flexurally strengthened with NSM FRP (NSM-strengthened beams), which were anchored with FRP U-jackets. Based on a parametric study that was undertaken, which used the simplified version of the FE approach, this paper proposed a strength model for the most common debonding failure mode in NSM-strengthened beams with FRP U-jackets. The proposed strength model consisted of an equation for the maximum NSM FRP strain (ɛf) at debonding failure. Once the maximum FRP strain was known, the load-carrying capacity of the strengthened beam could be obtained through a section analysis. Comparing the predictions made by the proposed strength model with the test results showed that the proposed strength model could provide close predictions.

How to cite this publication

Ke Yan, F. L. Shi, Shi Shun Zhang, X.F. Nie, Wengui Li (2023). Strength Model for Debonding Failure in RC Beams Flexurally Strengthened with NSM FRP and Anchored with FRP U-Jackets. , 27(5), DOI: https://doi.org/10.1061/jccof2.cceng-4215.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1061/jccof2.cceng-4215

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access