0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDeep rock engineering is in a high pre-stressed state before excavation. In this research, a method to calculate the release of strain energy caused by excavation in pre-stressed rock is proposed. The normal stress release after excavation leads to a reduction in strain energy in rock specimens. The influence of excavation height and width on strain energy release is inconsistent under vertical loading. When the height of the hole is 1 mm, the strain energy release is large, and the increase in height of hole leads to a slow increase in the strain energy release. When the width of the hole is 1 mm, the strain energy release is very small, and the increase in the width of the hole leads to an increasingly faster release of strain energy. This strain energy release exponentially increases with the increase in the lateral pressure coefficient, showing a trend in the second power of the lateral pressure coefficient. Moreover, the tunnel failure caused by excavation under high stress is obtained by a numerical calculation. The failure modes of the deep tunnel model are strain rockbursts caused by tangential stress concentrations and spalling caused by normal stress release, which is also observed in the failure mode of the actual tunnel.
Peng Xiao, Diyuan Li, Quanqi Zhu (2022). Strain Energy Release and Deep Rock Failure Due to Excavation in Pre-Stressed Rock. , 12(4), DOI: https://doi.org/10.3390/min12040488.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/min12040488
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access