0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSupported nanoparticle synthesis and assembly have application in a wide range of modern day applications. Key to the manipulation of the particle assembly is an understanding of the interaction between the particles and solvent. Here, we employ a comprehensive in situ approach, together with ex situ SEM imaging, to study supported palladium nanoparticles, electrodeposited from a 2:1 urea:choline Cl– DES. Using cyclic voltammetry, we confirm the expected adsorption of electroactive species onto the deposited particles. On the basis of our experimental results, we conclude that the electrodeposited nanoparticles assemble into 2-D superstructures, rich in adsorbed species. The abundance of these adsorbed species, within the superstructure, induces an anionic layer above them, which can be observed by ultrasmall-angle X-ray scattering (USAXS) as well as electrochemical impedance spectroscopy (EIS). The surface charge of the particles is, therefore, not neutralized locally, as is the case with traditional colloidal systems. We also show that these otherwise stable nanoparticles readily aggregate when the DES is removed. Thus, the stability of these particles is contingent upon the presence of the DES.
Joshua A. Hammons, Thibault Muselle, Jon Ustarroz, Maria Tzedaki, Marc Raes, Annick Hubin, Herman Terryn (2013). Stability, Assembly, and Particle/Solvent Interactions of Pd Nanoparticles Electrodeposited from a Deep Eutectic Solvent. The Journal of Physical Chemistry C, 117(27), pp. 14381-14389, DOI: 10.1021/jp403739y.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Physical Chemistry C
DOI
10.1021/jp403739y
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access