0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSemiconductor nanowire (NW) devices that can address intracellular electrophysiological events with high sensitivity and spatial resolution are emerging as key tools in nanobioelectronics. Intracellular delivery of NWs without compromising cellular integrity and metabolic activity has, however, proven difficult without external mechanical forces or electrical pulses. Here, we introduce a biomimetic approach in which a cell penetrating peptide, the trans-activating transcriptional activator (TAT) from human immunodeficiency virus 1, is linked to the surface of Si NWs to facilitate spontaneous internalization of NWs into primary neuronal cells. Confocal microscopy imaging studies at fixed time points demonstrate that TAT-conjugated NWs (TAT-NWs) are fully internalized into mouse hippocampal neurons, and quantitative image analyses reveal an ca. 15% internalization efficiency. In addition, live cell dynamic imaging of NW internalization shows that NW penetration begins within 10-20 min after binding to the membrane and that NWs become fully internalized within 30-40 min. The generality of cell penetrating peptide modification method is further demonstrated by internalization of TAT-NWs into primary dorsal root ganglion (DRG) neurons.
Jae‐Hyun Lee, Anqi Zhang, Siheng Sean You, Charles M. Lieber (2016). Spontaneous Internalization of Cell Penetrating Peptide-Modified Nanowires into Primary Neurons. Nano Letters, 16(2), pp. 1509-1513, DOI: 10.1021/acs.nanolett.6b00020.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/acs.nanolett.6b00020
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access