0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA combined spectroscopic and theoretical study on triphenyl- and dimethyl-phenyl siloxy molybdenum and tungsten alkylidyne catalysts for alkyne metathesis is reported. Using NMR, X-ray, UV–vis, and resonance Raman spectroscopy and density functional theory calculations, the influence of different ligand systems and metal centers on the geometric and electronic structure and thermochemistry of different intermediates is investigated, that is, the starting alkylidyne and the derived metallacyclobutadiene (MCBD) and metallatetrahedrane (MTd). This includes a mechanistic and kinetic study on the formation and isomerization of MCBDs and MTds. Upon changing from monodentate to tripodal siloxy ligands, higher steric strain is imposed, which modulates the relative energies of the different intermediates. Additionally, intramolecular dispersion interactions between the bound substrate and the ligand can be operative. Tungsten as the central metal leads to stronger M–C σ-bonds, which overstabilize the reaction intermediates and preclude effective turnover. Furthermore, kinetic modeling strongly suggests that MTds are off-cycle intermediates based on the high barriers for direct formation but low barriers for isomerization from MCBDs. We infer from our findings that effective catalysis can only be achieved when factors that (over)stabilize intermediates, such as strong M–C bonds or large dispersion interactions, are prevented by appropriate catalyst design.
Alexander Haack, Julius Hillenbrand, Maurice van Gastel, Alois Fürstner, Frank Neese (2021). Spectroscopic and Theoretical Study on Siloxy-Based Molybdenum and Tungsten Alkylidyne Catalysts for Alkyne Metathesis. ACS Catalysis, 11(15), pp. 9086-9101, DOI: 10.1021/acscatal.1c01587.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
ACS Catalysis
DOI
10.1021/acscatal.1c01587
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access