Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Sparse representation for machine learning the properties of defects in 2D materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Sparse representation for machine learning the properties of defects in 2D materials

0 Datasets

0 Files

English
2023
npj Computational Materials
Vol 9 (1)
DOI: 10.1038/s41524-023-01062-z

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
N. Kazeev
Abdalaziz Rashid Al-Maeeni
Ignat Romanov
+7 more

Abstract

Two-dimensional materials offer a promising platform for the next generation of (opto-) electronic devices and other high technology applications. One of the most exciting characteristics of 2D crystals is the ability to tune their properties via controllable introduction of defects. However, the search space for such structures is enormous, and ab-initio computations prohibitively expensive. We propose a machine learning approach for rapid estimation of the properties of 2D material given the lattice structure and defect configuration. The method suggests a way to represent configuration of 2D materials with defects that allows a neural network to train quickly and accurately. We compare our methodology with the state-of-the-art approaches and demonstrate at least 3.7 times energy prediction error drop. Also, our approach is an order of magnitude more resource-efficient than its contenders both for the training and inference part.

How to cite this publication

N. Kazeev, Abdalaziz Rashid Al-Maeeni, Ignat Romanov, Maxim Faleev, Ruslan Lukin, Alexander Tormasov, A. H. Castro Neto, Konstantin ‘kostya’ Novoselov, Pengru Huang, A. Ustyuzhanin (2023). Sparse representation for machine learning the properties of defects in 2D materials. npj Computational Materials, 9(1), DOI: 10.1038/s41524-023-01062-z.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

npj Computational Materials

DOI

10.1038/s41524-023-01062-z

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access