RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Soft Actuators and Robots Enabled by Additive Manufacturing

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Soft Actuators and Robots Enabled by Additive Manufacturing

0 Datasets

0 Files

English
2023
Annual Review of Control Robotics and Autonomous Systems
Vol 6 (1)
DOI: 10.1146/annurev-control-061022-012035

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guoying Gu
Guoying Gu

Shanghai Jiao Tong University

Verified
Dong Wang
Jinqiang Wang
Zequn Shen
+5 more

Abstract

Soft robotic systems are human friendly and can mimic the complex motions of animals, which introduces promising potential in various applications, ranging from novel actuation and wearable electronics to bioinspired robots operating in unstructured environments. Due to the use of soft materials, the traditional fabrication and manufacturing methods for rigid materials are unavailable for soft robots. 3D printing is a promising fabrication method for the multifunctional and multimaterial demands of soft robots, as it enables the personalization and customization of the materials and structures. This review provides perspectives on the manufacturing methods for various types of soft robotic systems and discusses the challenges and prospects of future research, including in-depth discussion of pneumatic, electrically activated, magnetically driven, and 4D-printed soft actuators and integrated soft actuators and sensors. Finally, the challenges of realizing multimaterial, multiscale, and multifunctional 3D-printed soft robots are discussed.

How to cite this publication

Dong Wang, Jinqiang Wang, Zequn Shen, Chengru Jiang, Jiang Zou, Le Dong, Nicholas X. Fang, Guoying Gu (2023). Soft Actuators and Robots Enabled by Additive Manufacturing. Annual Review of Control Robotics and Autonomous Systems, 6(1), pp. 31-63, DOI: 10.1146/annurev-control-061022-012035.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Annual Review of Control Robotics and Autonomous Systems

DOI

10.1146/annurev-control-061022-012035

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access