Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream

0 Datasets

0 Files

English
2016
Applied Thermal Engineering
Vol 107
DOI: 10.1016/j.applthermaleng.2016.07.027

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Yongzheng Yao
Xudong Cheng
Shaogang Zhang
+3 more

Abstract

Smoke back-layering flow length is the length of the reversed smoke flow upstream of the fire when the longitudinal ventilation velocity is lower than the critical velocity. This paper experimentally investigates the smoke back-layering flow length of longitudinal ventilated tunnel fires with a vertical shaft in the upstream (0.5–4.0m from the fire source) using a 1/10 reduced-scale subway tunnel model. Experimental results show that the vertical shaft in the upstream can control the smoke back-layering flow length within a relatively limited range, compared to the tunnel without vertical shaft. Moreover, for the cases that the fire source is not located exactly below the vertical shaft, the most appropriate dimensionless distance between the vertical shaft and fire source is 3, resulting in the shortest smoke back-layering flow length. By introducing a concept of virtual fire source below vertical shaft, a new empirical model was further deduced to predict the smoke back-layering flow length. Its predictions fit reasonably well when the dimensionless longitudinal flow velocity is less than 0.19. Beyond that, the predictions are little higher than the experiments, which is because some of the assumptions in this model are invalid under higher longitudinal ventilation velocity.

How to cite this publication

Yongzheng Yao, Xudong Cheng, Shaogang Zhang, Kai Zhu, Long Shi, Heping Zhang (2016). Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream. Applied Thermal Engineering, 107, pp. 738-746, DOI: 10.1016/j.applthermaleng.2016.07.027.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Applied Thermal Engineering

DOI

10.1016/j.applthermaleng.2016.07.027

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access