Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Skeletal Network Enabling New‐Generation Thermoplastic Vulcanizates

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Skeletal Network Enabling New‐Generation Thermoplastic Vulcanizates

0 Datasets

0 Files

English
2023
Advanced Materials
Vol 35 (24)
DOI: 10.1002/adma.202300856

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guo Baochun
Guo Baochun

South China University of Technology

Verified
Shuangjian Yu
Siwu Wu
Shifeng Fang
+3 more

Abstract

Upcycling of cross-linked rubbers is pressing. The introduction of dynamic covalent bonds into the networks is a popular tactic for recycling thermosetting polymers, but it is very challenging to integrate engineering performance and continuous yet stable reprocessability. Based on traditional rubber formulations, herein, a straightforward strategy is presented for constructing a skeletal network (SN) through interfacial crosslinking and percolation of rubbery granules in a rubber matrix. Rapid exchange reactions involving dynamic interfacial sulfides realize repeated "fragmentation and healing" in the solid-state and consequent reconfiguration of the SN topology of the elastomer, thus endowing the resultant SN elastomer with continuous yet stable re-extrudability. These SN elastomers with hierarchical structures exhibit high gel contents, high resilience, low creep, and reinforcibility competitive to traditional vulcanizates. Specifically, SN elastomers exhibit better overall performance than commercial thermoplastic vulcanizates (TPVs) materials. Overall, a new concept of thermoplastic vulcanizates is proposed, which will promote the sustainable development of rubbers.

How to cite this publication

Shuangjian Yu, Siwu Wu, Shifeng Fang, Zhenghai Tang, Liqun Zhang, Guo Baochun (2023). Skeletal Network Enabling New‐Generation Thermoplastic Vulcanizates. Advanced Materials, 35(24), DOI: 10.1002/adma.202300856.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Advanced Materials

DOI

10.1002/adma.202300856

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access