0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the $\ensuremath{\langle}110\ensuremath{\rangle}$ orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.
Yong Zhu, Qingquan Qin, Feng Xu, Feng Ru Fan, Yong Ding, Tim Zhang, Benjamin J. Wiley, Zhong Lin Wang (2012). Size effects on elasticity, yielding, and fracture of silver nanowires:<i>In situ</i>experiments. , 85(4), DOI: https://doi.org/10.1103/physrevb.85.045443.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1103/physrevb.85.045443
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access