0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis brief is concerned with the problem of a single-input pinning control design for reachability of Boolean networks (BNs). Specifically, the transition matrix of a BN is designed to steer the BN from an initial state to a desirable one. In addition, some nodes are selected as the pinning nodes by solving some logical matrix equations. Furthermore, a single-input pinning control algorithm is given. Eventually, a genetic regulatory network is provided to demonstrate the effectiveness and feasibility of the developed method.
Fangfei Li, Huaicheng Yan, Hamid Reza Karimi (2017). Single-Input Pinning Controller Design for Reachability of Boolean Networks. IEEE Transactions on Neural Networks and Learning Systems, pp. 1-6, DOI: 10.1109/tnnls.2017.2705109.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2017.2705109
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access