0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanowires represent a promising class of materials for exploring new concepts in solar energy conversion. Here we report the first experimental realization of axial modulation-doped p-i-n and tandem p-i-n(+) -p(+)-i-n silicon nanowire (SiNW) photovoltaic elements. Scanning electron microscopy images of selectively etched nanowires demonstrate excellent synthetic control over doping and lengths of distinct regions in the diode structures. Current-voltage (I-V) characteristics reveal clear and reproducible diode characteristics for the p-i-n and p-n SiNW devices. Under simulated one-sun solar conditions (AM 1.5G), optimized p-i-n SiNW devices exhibited an open circuit voltage (Voc) of 0.29 V, a maximum short-circuit current density of 3.5 mA/cm(2), and a maximum efficiency of 0.5%. The response of the short-circuit current versus Voc under varying illumination intensities shows that the diode quality factor is improved from n=1.78 to n=1.28 by insertion of the i-type SiNW segment. The temperature dependence of Voc scales as -2.97 mV/K and extrapolates to the crystalline Si band gap at 0 K, which is in excellent agreement with bulk properties. Finally, a novel single SiNW tandem solar cell consisting of synthetic integration of two photovoltaic elements with an overall p-i-n(+) -p(+)-i-n structure was prepared and shown to exhibit a Voc that is on average 57% larger than that of the single p-i-n device. Fundamental studies of such well-defined nanowire photovoltaics will enable their intrinsic performance limits to be defined.
Thomas J. Kempa, Bozhi Tian, Dong Rip Kim, Jin‐Song Hu, Xiaolin Zheng, Charles M. Lieber (2008). Single and Tandem Axial <i>p-i-n</i> Nanowire Photovoltaic Devices. Nano Letters, 8(10), pp. 3456-3460, DOI: 10.1021/nl8023438.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/nl8023438
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access