RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ship wake induced seabed modification in the Baltic Sea

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2025

Ship wake induced seabed modification in the Baltic Sea

0 Datasets

0 Files

English
2025
DOI: 10.5194/egusphere-egu25-16457

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peter Feldens
Peter Feldens

Institution not specified

Verified
Jacob Geersen
Peter Feldens
Jens Schneider von Deimling
+5 more

Abstract

The Baltic Sea is one of the busiest marine regions in terms of commercial shipping. Increased marine traffic over the last decades already led to increased number of bigger ships and more powerful propulsions systems. This development has put a number of environmental effects of shipping, such as air pollution, marine noise or accidental discharges of hazardous substances, on the discussion list. What has, however, only marginally been studied is the possible effect of commercial shipping on sedimentation patterns and seafloor morphology. Here we use AIS data from the last 20 years to identify hotspots of marine traffic in the Baltic Sea. Subsequently we collect multibeam bathymetric data from different sources and databases to investigate seafloor morphology in some traffic hotspots. We further collect seabed sediment samples and time-lapse bathymetric data in the Bay of Kiel, where Kiel Canal, one of the most heavily used artificial waterways on the globe, commences. First results indicate that ships can erode hard substrate such as basal till, most likely through interaction of their wake with the seafloor. In addition to eroding the hard seafloor, the wakes may also mobilize and locally redistribute mobile sands.

How to cite this publication

Jacob Geersen, Peter Feldens, Jens Schneider von Deimling, Luisa Rollwage, Lenya Mara Baumann, Sebastian Krastel, Christian Winter, Patrick Westfeld (2025). Ship wake induced seabed modification in the Baltic Sea. , DOI: 10.5194/egusphere-egu25-16457.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2025

Authors

8

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu25-16457

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access