0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNear-surface mounted (NSM) fiber-reinforced polymer (FRP) technique is known as a promising alternative to the externally bonded (EB) FRP technique for strengthening reinforced concrete (RC) members, on account of its many advantages such as high bond efficiency with concrete and good durability. Shear strengthening of RC beams by near-surface mounting the FRP bars/strips into the concrete cover on beam sides is one of the most prevalent applications of NSM FRP. Abundant experimental studies have been conducted to investigate the behaviour of NSM FRP shear strengthened beams, and many strength models for predicting the contribution of NSM FRPs to the shear capacity of the beam have been proposed. The present paper presents a comprehensive review of these strength models, in which all the models collected from the existing literature are first classified into three categories based on their used approach and then summarized and discussed. This paper not only aims to bring a deep understanding of the existing strength models for NSM FRP shear strengthened RC beams, but also provides a background and basis for the assessment of these models by using the newly-generated experimental database in the companion paper.
M.J. Jedrzejko, Shi Shun Zhang, Ke Yan, Dilum Fernando, X.F. Nie (2022). Shear strengthening of RC beams with NSM FRP. I: Review of strength models. , 26(3), DOI: https://doi.org/10.1177/13694332221125832.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1177/13694332221125832
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access