0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAxially compressed circular cylindrical shells with large diameter-to-thickness ratios are highly susceptible to local buckling, and their load-carrying capacities are known to be very sensitive to initial geometric imperfections. Hence, severe knock-down factors on their theoretical buckling loads are typically prescribed in design specifications, which greatly impair their structural efficiency. With the aim of enhancing load-bearing resistance and reducing sensitivity to imperfections, the shape optimisation and assessment of compressed free-form wavy cylindrical shells, the realisation of which is now viable through additive manufacturing, are the subject of the present study. The adopted optimisation framework employs the Particle Swarm Optimisation (PSO) algorithm, integrating computer-aided geometric design, nonlinear numerical simulations and imperfection sensitivity analyses. The structural performance of the optimised free-form wavy shells is analysed and compared to that of reference circular shells, as well as other types of non-circular shell profiles, including sinusoidally corrugated shells, Aster shells and stringer-stiffened shells. The optimised free-form wavy shell profiles are shown to exhibit increases in ultimate stress of up to 136% compared with the reference circular shell profiles; in general, greater benefits are achieved for more slender cross-sections. In future work, the proposed optimised shells will be manufactured in stainless steel by means of powder bed fusion (PBF), and their structural performance will be further verified through physical experiments.
Ruizhi Zhang, Xin Meng, Leroy Gardner (2022). Shape optimisation of stainless steel corrugated cylindrical shells for additive manufacturing. , 270, DOI: https://doi.org/10.1016/j.engstruct.2022.114857.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.engstruct.2022.114857
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access