0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSemiconductor nanowires (NWs) represent a unique system for exploring phenomena at the nanoscale and are also expected to play a critical role in future electronic and optoelectronic devices. Here we review recent advances in growth, characterization, assembly and integration of chemically synthesized, atomic scale semiconductor NWs. We first introduce a general scheme based on a metal-cluster catalyzed vapour–liquid–solid growth mechanism for the synthesis of a broad range of NWs and nanowire heterostructures with precisely controlled chemical composition and physical dimension. Such controlled growth in turn results in controlled electrical and optical properties. Subsequently, we discuss novel properties associated with these one-dimensional (1D) structures such as discrete 1D subbands formation and Coulomb blockade effects as well as ballistic transport and many-body phenomena. Room-temperature high-performance electrical and optical devices will then be discussed at the single- or few-nanowire level. We will then explore methods to assemble and integrate NWs into large-scale functional circuits and real-world applications, examples including high-performance DC/RF circuits and flexible electronics. Prospects of a fundamentally different 'bottom-up' paradigm, in which functionalities are coded during growth and circuits are formed via self-assembly, will also be briefly discussed.
Wei Lü, Charles M. Lieber (2006). Semiconductor nanowires. Journal of Physics D Applied Physics, 39(21), pp. R387-R406, DOI: 10.1088/0022-3727/39/21/r01.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Journal of Physics D Applied Physics
DOI
10.1088/0022-3727/39/21/r01
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access