0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFabrication of human-like intelligent tactile sensors is an intriguing challenge for developing human–machine interfaces. As inspired by somatosensory signal generation and neuroplasticity-based signal processing, intelligent neuromorphic tactile sensors with learning and memory based on the principle of a triboelectric nanogenerator are demonstrated. The tactile sensors can actively produce signals with various amplitudes on the basis of the history of pressure stimulations because of their capacity to mimic neuromorphic functions of synaptic potentiation and memory. The time over which these tactile sensors can retain the memorized information is alterable, enabling cascaded devices to have a multilevel forgetting process and to memorize a rich amount of information. Furthermore, smart fingers by using the tactile sensors are constructed to record a rich amount of information related to the fingers' current actions and previous actions. This intelligent active tactile sensor can be used as a functional element for artificial intelligence.
Chaoxing Wu, Tae Whan Kim, Jae Hyeon Park, Bonmin Koo, Sihyun Sung, Jiajia Shao, Chi Zhang, Zhong Lin Wang (2019). Self-Powered Tactile Sensor with Learning and Memory. , 14(2), DOI: https://doi.org/10.1021/acsnano.9b07165.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.9b07165
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access