0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn ocean wave contains various marine information, but it is generally difficult to obtain the high-precision quantification to meet the needs of ocean development and utilization. Here, we report a self-powered and high-performance triboelectric ocean-wave spectrum sensor (TOSS) fabricated using a tubular triboelectric nanogenerator (TENG) and hollow ball buoy, which not only can adapt to the measurement of ocean surface water waves in any direction but also can eliminate the influence of seawater on the performance of the sensor. Based on the high-sensitivity advantage of TENG, an ultrahigh sensitivity of 2530 mV mm-1 (which is 100 times higher than that of previous work) and a minimal monitoring error of 0.1% are achieved in monitoring wave height and wave period, respectively. Importantly, six basic ocean-wave parameters (wave height, wave period, wave frequency, wave velocity, wavelength, and wave steepness), wave velocity spectrum, and mechanical energy spectrum have been derived by the electrical signals of TOSS. Our finding not only can provide ocean-wave parameters but also can offer significant and accurate data support for cloud computing of ocean big data.
Chuguo Zhang, Lu Liu, Linglin Zhou, Xing Yin, Xuelian Wei, Yuexiao Hu, Yuebo Liu, Shengyang Chen, Jie Wang, Zhong Lin Wang (2020). Self-Powered Sensor for Quantifying Ocean Surface Water Waves Based on Triboelectric Nanogenerator. , 14(6), DOI: https://doi.org/10.1021/acsnano.0c01827.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.0c01827
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access