Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Self-heating performance of phase change cementitious mortar with hybrid carbon-based nanomaterials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Self-heating performance of phase change cementitious mortar with hybrid carbon-based nanomaterials

0 Datasets

0 Files

English
2024
Journal of Energy Storage
Vol 104
DOI: 10.1016/j.est.2024.114495

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Xiaonan Wang
Yipu Guo
Zhong Tao
+2 more

Abstract

Temperature fluctuations pose a critical challenge for infrastructure, necessitating functional concrete to protect structures and promote sustainability. Self-heating concrete and phase change material (PCM) concrete are closely linked to thermal energy, with the former focused on heat generation and the latter on heat storage. This study aims to explore the self-heating performance of modified PCM concrete. Carbon-based materials, chosen for their low electrical resistance and high thermal conductivity, are incorporated to enhance the PCM concrete. Carbon black (CB), carbon nanotubes (CNT), and carbon fibres (CF) with various dimensions and scales, are combined to achieve optimal performance. Materials below a threshold yield minimal change, as they fail to establish the crucial conductive circuit. The self-heating behaviour becomes pronounced with increased in materials, reaching an optimal temperature rise up to 31.2 °C in one hour. However, the group with the highest content of materials experiences a reduced final temperature of 23.9 °C and an increased electrical conductivity of 40 Ω. CB and CNT show different efficiency improvements, and the ideal combination is proposed as 0.3 % CNT and 0.75 % CB. Inorganic hydrated salt-based PCM reduces electrical conductivity by 12 % – 35 % in its liquid state due to free ions, potentially enhancing self-heating capability, though its impact is less significant compared to carbon materials. Overall, the optimum group demonstrates significant self-heating behaviour, high efficiency, and low material cost. Models and electrical impedance results validate these observations and provide novel insight into the self-heating performance of PCM mortar with hybrid carbon-based materials.

How to cite this publication

Xiaonan Wang, Yipu Guo, Zhong Tao, Long Shi, Wengui Li (2024). Self-heating performance of phase change cementitious mortar with hybrid carbon-based nanomaterials. Journal of Energy Storage, 104, pp. 114495-114495, DOI: 10.1016/j.est.2024.114495.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of Energy Storage

DOI

10.1016/j.est.2024.114495

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration