0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTemperature fluctuations pose a critical challenge for infrastructure, necessitating functional concrete to protect structures and promote sustainability. Self-heating concrete and phase change material (PCM) concrete are closely linked to thermal energy, with the former focused on heat generation and the latter on heat storage. This study aims to explore the self-heating performance of modified PCM concrete. Carbon-based materials, chosen for their low electrical resistance and high thermal conductivity, are incorporated to enhance the PCM concrete. Carbon black (CB), carbon nanotubes (CNT), and carbon fibres (CF) with various dimensions and scales, are combined to achieve optimal performance. Materials below a threshold yield minimal change, as they fail to establish the crucial conductive circuit. The self-heating behaviour becomes pronounced with increased in materials, reaching an optimal temperature rise up to 31.2 °C in one hour. However, the group with the highest content of materials experiences a reduced final temperature of 23.9 °C and an increased electrical conductivity of 40 Ω. CB and CNT show different efficiency improvements, and the ideal combination is proposed as 0.3 % CNT and 0.75 % CB. Inorganic hydrated salt-based PCM reduces electrical conductivity by 12 % – 35 % in its liquid state due to free ions, potentially enhancing self-heating capability, though its impact is less significant compared to carbon materials. Overall, the optimum group demonstrates significant self-heating behaviour, high efficiency, and low material cost. Models and electrical impedance results validate these observations and provide novel insight into the self-heating performance of PCM mortar with hybrid carbon-based materials.
Xiaonan Wang, Yipu Guo, Zhong Tao, Long Shi, Wengui Li (2024). Self-heating performance of phase change cementitious mortar with hybrid carbon-based nanomaterials. Journal of Energy Storage, 104, pp. 114495-114495, DOI: 10.1016/j.est.2024.114495.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Energy Storage
DOI
10.1016/j.est.2024.114495
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration