Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Selenium deficiency risk predicted to increase under future climate change

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Selenium deficiency risk predicted to increase under future climate change

0 Datasets

0 Files

en
2017
Vol 114 (11)
Vol. 114
DOI: 10.1073/pnas.1611576114

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Pete Smith
Pete Smith

University of Aberdeen

Verified
Gerrad D. Jones
Boris Droz
Peter Greve
+6 more

Abstract

Significance The trace element selenium is essential for human health and is required in a narrow dietary concentration range. Insufficient selenium intake has been estimated to affect up to 1 billion people worldwide. Dietary selenium availability is controlled by soil–plant interactions, but the mechanisms governing its broad-scale soil distributions are largely unknown. Using data-mining techniques, we modeled recent (1980–1999) distributions and identified climate–soil interactions as main controlling factors. Furthermore, using moderate climate change projections, we predicted future (2080–2099) soil selenium losses from 58% of modeled areas (mean loss = 8.4%). Predicted losses from croplands were even higher, with 66% of croplands predicted to lose 8.7% selenium. These losses could increase the worldwide prevalence of selenium deficiency.

How to cite this publication

Gerrad D. Jones, Boris Droz, Peter Greve, Pia Gottschalk, Deyan Poffet, S. P. McGrath, Sonia I. Seneviratne, Pete Smith, Lenny H. E. Winkel (2017). Selenium deficiency risk predicted to increase under future climate change. , 114(11), DOI: https://doi.org/10.1073/pnas.1611576114.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1073/pnas.1611576114

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access