RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Scavenging Energy and Information through Dynamically Regulating the Electrical Double Layer

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Scavenging Energy and Information through Dynamically Regulating the Electrical Double Layer

0 Datasets

0 Files

en
2024
DOI: 10.1002/adfm.202405520

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xiang Li
Zhong Lin Wang
Di Wei

Abstract

Abstract The electrical double layer (EDL) between solids and liquids serves as the primary interface for ionic‐electronic coupling and is pivotal in nanoscale phenomena, governing electric field effects, ion transport, surface interactions, etc. Dynamically regulating the EDL through mechanical or electrostatic methods can influence charge carrier behavior, thereby impacting energy scavenging and storage processes. This regulation enabled efficient energy scavenging by governing ionic migration and optimizing charge carrier concentration at the interface, presenting a novel avenue to achieve efficient energy and information flow. Here, various scavenging energy and information devices through dynamically regulating the EDL are systematically reviewed. They are classified into three groups by regulating the distribution and movement of charge carriers throughout the entire EDL, diffuse layer, and Debye length range. The review provided a comprehensive overview of the operating principles, influencing factors, output characteristics, and typical applications, along with a discussion on future challenges. This holistic examination offers researchers valuable insights for evaluating their applicability in various scenarios.

How to cite this publication

Xiang Li, Zhong Lin Wang, Di Wei (2024). Scavenging Energy and Information through Dynamically Regulating the Electrical Double Layer. , DOI: https://doi.org/10.1002/adfm.202405520.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adfm.202405520

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access