0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHarvesting low-speed wind energy is challenging for existing technologies. In this work, we developed a wake-galloping-driven triboelectric nanogenerator (TENG) (named WG-TENG) to effectively harvest breeze wind energy when the wind speed is as low as 1 ms -1 . The unique dynamics feature of wake galloping effect enables the proposed device a simple structure (minimalist contact-separation mode), low onset wind speed, lightweight (8.5 g), easy fabrication, and good portability. The relationship between the WG-TENG output performance and its structural parameters as well as bluff body geometries has been systematically studied. Attributed to the vibration enhancement realized by the wake galloping phenomenon and high efficiency of TENG at low-frequency, the proposed harvester not only can be used to drive small electronics, but also realizes a highly sensitive real-time wind speed monitoring system. This work realizes a miniaturized and high electrical performance wind-driven TENG for practical applications.
Songlei Yuan, Qixuan Zeng, Dujuan Tan, Yanlin Luo, Xiaofang Zhang, Hengyu Guo, Xue Wang, Zhong Lin Wang (2022). Scavenging Breeze Wind Energy (1 - 8.1 Ms-1) by Minimalist Triboelectric Nanogenerator Based on the Wake Galloping Phenomenon. , DOI: https://doi.org/10.2139/ssrn.4095865.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.2139/ssrn.4095865
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access