0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWhile the majority of methods for community detection produce disjoint communities of nodes, most real-world networks naturally involve overlapping communities. In this paper, a scalable method for the detection of overlapping communities in large networks is proposed. The method is based on an extension of the notion of normalized cut to cope with overlapping communities. A spectral clustering algorithm is formulated to solve the related cut minimization problem. When available, the algorithm may take into account prior information about the likelihood for each node to belong to several communities. This information can either be extracted from the available metadata or from node centrality measures. We also introduce a hierarchical version of the algorithm to automatically detect the number of communities. In addition, a new benchmark model extending the stochastic blockmodel for graphs with overlapping communities is formulated. Our experiments show that the proposed spectral method outperforms the state-of-the-art algorithms in terms of computational complexity and accuracy on our benchmark graph model and on five real-world networks, including a lexical network and large-scale social networks. The scalability of the proposed algorithm is also demonstrated on large synthetic graphs with millions of nodes and edges.
Hadrien Van Lierde, Tommy W. S. Chow, Guanrong Chen (2019). Scalable Spectral Clustering for Overlapping Community Detection in Large-Scale Networks. IEEE Transactions on Knowledge and Data Engineering, 32(4), pp. 754-767, DOI: 10.1109/tkde.2019.2892096.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Knowledge and Data Engineering
DOI
10.1109/tkde.2019.2892096
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access