0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.
Christian Koelsche, Daniel Schrimpf, Damian Stichel, Martin Sill, Felix Sahm, David Reuß, Mirjam Blattner, Barbara C. Worst, Christoph E. Heilig, Katja Beck, Peter Horak, Simon Kreutzfeldt, Elke Paff, Sebastian Stark, Pascal D. Johann, Florian Selt, Jonas Ecker, Dominik Sturm, Kristian W. Pajtler, Annekathrin Reinhardt, Annika K. Wefers, Philipp Sievers, Azadeh Ebrahimi, Abigail K. Suwala, Francisco Fernández‐Klett, Belén Casalini, Andrey Korshunov, Volker Hovestadt, F. Kommoss, Mark Kriegsmann, Matthias Schick, Melanie Bewerunge‐Hudler, Till Milde, Olaf Witt, Andreas E. Kulozik, Marcel Kool, Laura Romero‐Pérez, Thomas G. P. Grünewald, Thomas Kirchner, Wolfgang Wick, Michael Platten, Andreas Unterberg, Matthias Uhl, Amir Abdollahi, Jürgen Debus, Burkhard Lehner, Christian Thomas, Martin Hasselblatt, Werner Paulus, Christian Hartmann, Ori Staszewski, Marco Prinz, Jürgen Hench, Stephan Frank, Yvonne M.H. Versleijen‐Jonkers, Marije E. Weidema, Thomas Mentzel, Klaus Griewank, Enrique de Álava, Juan Díaz‐Martín, Miguel Á. Idoate, Kenneth Tou En Chang, Sharon Y. Y. Low, Adrián Cuevas-Bourdier, Michel Mittelbronn, Martin Mynarek, Stefan Rutkowski, Ulrich Schüller, Viktor Mautner, Jens Schittenhelm, Jonathan Serrano, Matija Snuderl, Reinhard Büttner, Thomas Klingebiel, Rolf Buslei, Manfred Gessler, Pieter Wesseling, Winand N.M. Dinjens, Sebastian Brandner, Zane Jaunmuktane, Iben Lyskjær, Peter Schirmacher, Albrecht Stenzinger, Benedikt Brors, Hanno Glimm, Christoph Heining, Òscar M. Tirado, Miguel Sáinz‐Jaspeado, Jaume Mora, Javier Alonso, Xavier García del Muro, Sebastián Morán, Manel Esteller, Jamal Benhamida, Marc Ladanyi, Eva Wardelmann, Cristina R. Antonescu, Adrienne M. Flanagan, Uta Dirksen, Peter Hohenberger (2021). Sarcoma classification by DNA methylation profiling. , 12(1), DOI: https://doi.org/10.1038/s41467-020-20603-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
100
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41467-020-20603-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access