Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Robustness, Entrainment, and Hybridization in Dissipative Molecular Networks, and the Origin of Life

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Robustness, Entrainment, and Hybridization in Dissipative Molecular Networks, and the Origin of Life

0 Datasets

0 Files

en
2019
Vol 141 (20)
Vol. 141
DOI: 10.1021/jacs.9b02554

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
George M M Whitesides
George M M Whitesides

Harvard University

Verified
Brian J. Cafferty
Albert S. Y. Wong
Sergey N. Semenov
+4 more

Abstract

How simple chemical reactions self-assembled into complex, robust networks at the origin of life is unknown. This general problem—self-assembly of dissipative molecular networks—is also important in understanding the growth of complexity from simplicity in molecular and biomolecular systems. Here, we describe how heterogeneity in the composition of a small network of oscillatory organic reactions can sustain (rather than stop) these oscillations, when homogeneity in their composition does not. Specifically, multiple reactants in an amide-forming network sustain oscillation when the environment (here, the space velocity) changes, while homogeneous networks—those with fewer reactants—do not. Remarkably, a mixture of two reactants of different structure—neither of which produces oscillations individually—oscillates when combined. These results demonstrate that molecular heterogeneity present in mixtures of reactants can promote rather than suppress complex behaviors.

How to cite this publication

Brian J. Cafferty, Albert S. Y. Wong, Sergey N. Semenov, Lee Belding, Samira Gmür, Wilhelm T. S. Huck, George M M Whitesides (2019). Robustness, Entrainment, and Hybridization in Dissipative Molecular Networks, and the Origin of Life. , 141(20), DOI: https://doi.org/10.1021/jacs.9b02554.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacs.9b02554

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access