0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Material abrasion in contact‐based freestanding mode‐triboelectric nanogenerators (FS‐TENGs) seriously deteriorates device mechanical durability and electrical stability, which causes TENGs to be only applicable in the harvesting of mechanical energy at low‐frequency. Here, a wide‐frequency and ultra‐robust rotational TENG is reported that is composed of a built‐in traction rope structure and capable of transforming from contact mode to non‐contact mode automatically as driven by the centrifugal force. With optimizing the fixed x and y position on slider and center shaft, respectively, the mode transition threshold speed can be reduced to 225 rpm. Additionally, the automatic working mode transition TENG exhibits excellent electrical stability, which can maintain 90% electric output after over 24 h of continuous operation, while the contact and non‐contact mode TENGs only retain 30% and 2% output, respectively. The high stability and large output density ensure its usage in the fast and effective charging of commercial capacitors or electronics. This work provides a prospective strategy for rotational TENGs to extend the frequency operation region and mechanical durability for practical applications.
Jie Chen, Hengyu Guo, Chenguo Hu, Zhong Lin Wang (2020). Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition. , 10(23), DOI: https://doi.org/10.1002/aenm.202000886.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.202000886
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access