0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSignificance The climate benefits of cellulosic biofuels have been challenged based on carbon debt, opportunity costs, and indirect land use change, prompting calls for withdrawing support for research and development. Using a quantitative ecosystem modeling approach, which explicitly differentiates primary production, ecosystem carbon balance, and biomass harvest, we show that none of these arguments preclude cellulosic biofuels from realizing greenhouse gas mitigation. Our assessment illustrates how deliberate land use choices support the climate performance of current-day cellulosic ethanol technology and how technological advancements and carbon capture and storage addition could produce several times the climate mitigation potential of competing land-based biological mitigation schemes. These results affirm the climate mitigation logic of biofuels, consistent with their prominent role in many climate stabilization scenarios.
John Field, Tom L. Richard, Erica A. H. Smithwick, Hao Cai, Mark Laser, David LeBauer, Stephen P. Long, Keith Paustian, Zhangcai Qin, John Sheehan, Pete Smith, Michael Wang, Lee R. Lynd (2020). Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. , 117(36), DOI: https://doi.org/10.1073/pnas.1920877117.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
13
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.1920877117
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access