0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper deals with the development of a novel deep learning framework to achieve highly accurate rotating machinery fault diagnosis using residual wide-kernel deep convolutional auto-encoder. Unlike most existing methods, in which the input data is processed by fast Fourier transform (FFT) and wavelet transform, this paper aims to learn important features from limited raw vibration signals. Firstly, the wide-kernel convolutional layer is introduced in the convolutional auto-encoder that can ensure the model can learn effective features from the data without any signal processing. Secondly, the residual learning block is introduced in convolutional auto-encoder that can ensure the model with sufficient depth without gradient vanishing and overfitting problems. Thirdly, convolutional auto-encoder can learn constructive features without massive data. To evaluate the performance of the proposed model, Case Western Reserve University (CWRU) bearing dataset and Southeast University (SEU) gearbox dataset are used to test. The experiment results and comparisons verify the denoising and feature extraction ability of the proposed model in the case of very few training samples.
Daoguang Yang, Hamid Reza Karimi, Kangkang Sun (2021). Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples. Neural Networks, 141, pp. 133-144, DOI: 10.1016/j.neunet.2021.04.003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Neural Networks
DOI
10.1016/j.neunet.2021.04.003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access