Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Residual Energy Based Cluster-head Selection in WSNs for IoT Application

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2019

Residual Energy Based Cluster-head Selection in WSNs for IoT Application

0 Datasets

0 Files

English
2019
arXiv (Cornell University)

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Trupti Mayee Behera
S. K. Mohapatra
Umesh Chandra Samal
+3 more

Abstract

Wireless sensor networks (WSN) groups specialized transducers that provide sensing services to Internet of Things (IoT) devices with limited energy and storage resources. Since replacement or recharging of batteries in sensor nodes is almost impossible, power consumption becomes one of the crucial design issues in WSN. Clustering algorithm plays an important role in power conservation for the energy constrained network. Choosing a cluster head can appropriately balance the load in the network thereby reducing energy consumption and enhancing lifetime. The paper focuses on an efficient cluster head election scheme that rotates the cluster head position among the nodes with higher energy level as compared to other. The algorithm considers initial energy, residual energy and an optimum value of cluster heads to elect the next group of cluster heads for the network that suits for IoT applications such as environmental monitoring, smart cities, and systems. Simulation analysis shows the modified version performs better than the LEACH protocol by enhancing the throughput by 60%, lifetime by 66%, and residual energy by 64%.

How to cite this publication

Trupti Mayee Behera, S. K. Mohapatra, Umesh Chandra Samal, Mohammad S. Khan, Mahmoud Daneshmand, Amir Gandomi (2019). Residual Energy Based Cluster-head Selection in WSNs for IoT Application. arXiv (Cornell University)

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access