0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPolitecnico di Milano
This paper addresses the problem of delay-dependent robust and reliable, H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> static output feedback (SOF) control for uncertain discrete-time piecewise-affine (PWA) systems with time-delay and actuator failure in a singular system setup. The Markov chain is applied to describe the actuator faults behaviors. In particular, by utilizing a system augmentation approach, the conventional closed-loop system is converted into a singular PWA system. By constructing a mode-dependent piecewise Lyapunov-Krasovskii functional, a new H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> performance analysis criterion is then presented, where a novel summation inequality and S-procedure are succeedingly employed. Subsequently, thanks to the special structure of the singular system formulation, the PWA SOF controller design is proposed via a convex program. Illustrative examples are finally given to show the efficacy and less conservatism of the presented approach.
Jianbin Qiu, Yanling Wei, Hamid Reza Karimi, Huijun Gao (2017). Reliable Control of Discrete-Time Piecewise-Affine Time-Delay Systems via Output Feedback. IEEE Transactions on Reliability, 67(1), pp. 79-91, DOI: 10.1109/tr.2017.2749242.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Reliability
DOI
10.1109/tr.2017.2749242
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access