Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNASA Goddard Space Flight Center
This paper analyzes the relation between satellite‐based measures of vegetation greenness and climate by land cover type at a regional scale (2° × 2° grid boxes) between 1982 and 1999. We use the normalized difference vegetation index (NDVI) from the Global Inventory Monitoring and Modeling Studies (GIMMS) data set to quantify climate‐induced changes in terrestrial vegetation. Climatic conditions are represented with monthly data for land surface air temperature and precipitation. The relation between NDVI and the climate variables is represented using a quadratic specification, which is consistent with the notion of a physiological optimum. The effects of spatial heterogeneity and unobserved variables are estimated with specifications and statistical techniques that allow coefficients to vary among grid boxes. Using this methodology, we are able to estimate statistically meaningful relations between NDVI and climate during spring, summer, and autumn for forests between 40°N and 70°N in North America and Eurasia. Of the variables examined, changes in temperature account for the largest fraction of the change in NDVI between the early 1980s and the late 1990s. Changes in stratospheric aerosol optical depth and precipitation have a smaller effect, while artifacts associated with variations in solar zenith angle are negligible. These results indicate that temperature changes between the early 1980s and the late 1990s are responsible for much of the observed increase in satellite measures of northern forest greenness.
Liming Zhou, Robert K. Kaufmann, Yuhong Tian, Ranga B. Myneni, Compton Tucker (2003). Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. Journal of Geophysical Research Atmospheres, 108(D1), DOI: 10.1029/2002jd002510.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2003
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Geophysical Research Atmospheres
DOI
10.1029/2002jd002510
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access