RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

​
We’ll occasionally send product updates. No spam.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Article
English
2013

Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion

0 Datasets

0 Files

$0 Value

English
2013
Gondwana Research
Vol 24 (2)
DOI: 10.1016/j.gr.2013.01.004

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Timothy Kusky
Timothy Kusky

Earth Science Elsevier

Verified
Timothy Kusky
Brian F. Windley
Inna Safonova
+4 more

Abstract

Ocean plate stratigraphy (OPS) is a term used to describe the sequence of sedimentary and volcanic rocks deposited on oceanic crust substratum from the time it forms at a spreading center, to the time it is incorporated into an accretionary prism at a convergent margin. In this study, we review the major geological characteristics of relict Cenozoic to early Archean oceanic crust and OPS persevered in Alaska, Japan, California (Franciscan Complex), Central Asia, British Isles, Canada (Slave Province), Australia (Pilbara craton), and Greenland (Isua and Ivisaartoq belts). An assessment of OPS in accretionary orogens spanning the duration of Earth's rock record shows remarkable similarities between OPS of all ages in terms of structural style, major rock components, sequence of accretion, and trace element geochemical signatures. Volcanic rocks preserved in the orogenic belts are characterized predominantly by oceanic island arc basalts, island arc picrites, mid-ocean ridge basalts, back-arc basalts, oceanic plateau basalts, ocean island basalts, and boninites, with extremely rare komatiites. This demonstrates that sea-floor spreading, lateral movement of oceanic plates with accompanying sedimentation over the oceanic substratum, and accretion at convergent margins have been major Earth processes since at least 3.8Ga ago. There have been some secular changes in the rock types in OPS, such as changes in carbonates and radiolarian cherts whose sources were in the biota in existence in Phanerozoic times but absent in the Precambrian, but overall, there have been few changes in the style of OPS accretion with time. Komatiites and banded iron formations occur predominantly in Archean orogenic belts, reflecting higher mantle temperatures and less oxic seawater composition, respectively, before 2.5Ga. This is clear documentation that plate tectonics, including the lateral movement of oceanic lithosphere, has been a major heat loss mechanism on Earth since the early Precambrian.

How to cite this publication

Timothy Kusky, Brian F. Windley, Inna Safonova, Koji Wakita, John Wakabayashi, Ali Polat, M. Santosh (2013). Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Research, 24(2), pp. 501-547, DOI: 10.1016/j.gr.2013.01.004.

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Gondwana Research

DOI

10.1016/j.gr.2013.01.004

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access