0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the foreseeable future, electric vehicles (EVs) will play a key role in the decarbonization of transport systems. Replacing vehicles powered by internal combustion engines (ICEs) with electric ones reduces the amount of carbon dioxide (CO2) being released into the atmosphere on a daily basis. The Achilles heel of electrical transportation lies in the car battery management system (BMS) that brings challenges to lithium-ion (Li-ion) battery optimization in finding the trade-off between driving and battery health in both the long- and short-term use. In order to optimize the state-of-health (SOH) of the EV battery, this study focuses on a review of the common Li-ion battery aging process and behavior detection methods. To implement the driving behavior approaches, a study of the public dataset produced by real-world EVs is also provided. This research clarifies the specific battery aging process and factors brought on by EVs. According to the battery aging factors, the unclear meaning of driving behavior is also clarified in an understandable manner. This work concludes by highlighting some challenges to be researched in the future to encourage the industry in this area.
Ka Seng Chou, Kei Long Wong, Davide Aguiari, Rita Tse, Su-kit Tang, Giovanni Pau (2023). Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging. Applied Sciences, 13(9), pp. 5608-5608, DOI: 10.3390/app13095608.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app13095608
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access