0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper provides a comprehensive review of the recent progress made in energy harvesting systems for wearable technology. An energy-harvesting system would be a useful strategy to address the issue of powering wearable electronic devices. This review presents different wearable energy harvesting methods based on the human body's heat and mechanical energy. To achieve continuous operation and high performance, reduce the requirement for external sources of energy, and enhance the lifespan of wearable devices, the invention of a sustainable and compatible power supply is required. In the human body, heat and mechanical motions are the two reliable and readily available energy sources. This study highlights the most recent research and advancements in energy harvesting from the human's mechanical motion and heat source. This article provides a detailed overview of the different wearable energy harvesters, their fabrication, working, and output results, which include piezoelectric, electrostatic, triboelectric, electromagnetic, thermoelectric, solar and hybrid wearable energy harvesters. The second part defines wearable energy harvesting using smart systems and artificial intelligence technology. Then the comparison of these energy harvesters is analyzed. Hybrid wearable energy harvesters provide the maximum power densities because they use two combined energy conversions. The advantages, limitations, and future perspectives of wearable energy harvesting technology are also discussed. Lastly, the wearable energy harvesters' market, and general developing and manufacturing cost of each wearable device is also presented functioning as a point of reference to comprehend the cost factors that are taken into account during the development and manufacturing processes.
Ahsan Ali, Hamna Shaukat, Saira Bibi, Wael A. Altabey, Mohammad Noori, Sallam A. Kouritem (2023). Recent progress in energy harvesting systems for wearable technology. Energy Strategy Reviews, 49, pp. 101124-101124, DOI: 10.1016/j.esr.2023.101124.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Energy Strategy Reviews
DOI
10.1016/j.esr.2023.101124
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access