0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.
Kai-Peng Hou, Jonas Börgel, Henry Z. H. Jiang, Daniel J. SantaLucia, Hyunchul Kwon, Hao Zhuang, Khetpakorn Chakarawet, Rachel C. Rohde, Jordan W. Taylor, Chaochao Dun, Maria V. Paley, Ari B. Turkiewicz, Jesse G. Park, Haiyan Mao, Ziting Zhu, E. Ercan, Jiyong Zhao, Michael Y. Hu, Barbara Lavina, Sergey Peredkov, Xudong Lv, Julia Oktawiec, Katie R. Meihaus, Dimitrios A. Pantazis, Marco Vandone, Valentina Colombo, Eckhard Bill, Jeffrey J. Urban, R. David Britt, Fernande Grandjean, Gary J. Long, Serena DeBeer, Frank Neese, Jeffrey A. Reimer, Jeffrey R. Long (2023). Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal–organic framework. Science, 382(6670), pp. 547-553, DOI: 10.1126/science.add7417.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
35
Datasets
0
Total Files
0
Language
English
Journal
Science
DOI
10.1126/science.add7417
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access