0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRandom walks constitute a fundamental mechanism for a large set of dynamics taking place on networks. In this article, we study random walks on weighted networks with an arbitrary degree distribution, where the weight of an edge between two nodes has a tunable parameter. By using the spectral graph theory, we derive analytical expressions for the stationary distribution, mean first-passage time (MFPT), average trapping time (ATT), and lower bound of the ATT, which is defined as the average MFPT to a given node over every starting point chosen from the stationary distribution. All these results depend on the weight parameter, indicating a significant role of network weights on random walks. For the case of uncorrelated networks, we provide explicit formulas for the stationary distribution as well as ATT. Particularly, for uncorrelated scale-free networks, when the target is placed on a node with the highest degree, we show that ATT can display various scalings of network size, depending also on the same parameter. Our findings could pave a way to delicately controlling random-walk dynamics on complex networks.
Zhongzhi Zhang, Tong Shan, Guanrong Chen (2013). Random walks on weighted networks. Physical Review E, 87(1), DOI: 10.1103/physreve.87.012112.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Physical Review E
DOI
10.1103/physreve.87.012112
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access