Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2008

Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles

0 Datasets

0 Files

en
2008
Vol 112 (51)
Vol. 112
DOI: 10.1021/jp807075f

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Fei Zhou
Zhiyuan Li
Ye Liu
+1 more

Abstract

Metal nanoparticles have received increasing attention for their peculiar capability to control local surface plasmon resonance (SPR) when interacting with incident light waves. In this article, we calculate the optical extinction spectra of silver nanocubes with the edge length ranging from 15 to 200 nm by using the discrete dipole approximation method. An increasing number of SPR peaks appear in the optical spectra, and their positions change when the nanocube size increases. We have developed a method to quantitatively separate the contributions of the individual dipole component and quadrupole component of the optical extinction cross sections. This allows us to specify unambiguously the physical origin of each SPR peak in the spectra. We have also extensively analyzed the distribution patterns of electric fields and electric charges within and around the silver nanoparticle. These patterns clearly show the dipole and quadrupole excitation features at the SPR peaks. The near-field analyses are consistent with the far-field extinction spectra analyses. This suggests that the combination of far-field spectra and near-field pattern analysis can greatly help to uncover the intrinsic physics behind light interaction with metal nanoparticles and excitation dynamics of local surface plasmonic waves.

How to cite this publication

Fei Zhou, Zhiyuan Li, Ye Liu, Younan Xia (2008). Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles. , 112(51), DOI: https://doi.org/10.1021/jp807075f.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2008

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jp807075f

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access