0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWater utilities are concerned about the issue of pipeline collapses, as service interruptions lead to water shortages. Pipeline collapses can occur during the maintenance phase when water columns compress entrapped air pockets, consequently increasing the pressure head. Analysing entrapped air pockets is complex due to the necessity of numerically solving a system of differential equations. Currently, water utilities need more tools to perform this analysis effectively. This research provides a numerical solution to the problem of entrapped air pockets in pipelines which can be utilised to predict filling operations. The study develops an analytical solution to examine the filling process. A practical application is shown, considering a 600 m long pipeline with an internal diameter of 400 mm. Compared with existing mathematical models, the results of the new analytical equations demonstrate their effectiveness as a new tool for computing the main hydraulic and thermodynamic variables involved in this issue.
Dalia M. Bonilla-Correa, Oscar Coronado-hernández, Alfonso Arrieta-Pastrana, Modesto Pérez‐Sánchez, Helena M. Ramos (2024). Proposed Approach for Modelling the Thermodynamic Behaviour of Entrapped Air Pockets in Water Pipeline Start-Up. Fluids, 9(8), pp. 185-185, DOI: 10.3390/fluids9080185.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Fluids
DOI
10.3390/fluids9080185
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access