RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient

0 Datasets

0 Files

en
2020
Vol 30 (40)
Vol. 30
DOI: 10.1002/adfm.202002031

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Jiajia Xue
Tong Wu
Jichuan Qiu
+3 more

Abstract

Abstract A simple method based upon masked electrospray is reported for directly generating both unidirectional and bidirectional density gradients of biomacromolecular particles on uniaxially aligned nanofibers. The method has been successfully applied to different types of biomacromolecules, including collagen and a mixture of collagen and fibronectin or laminin, to suit different types of applications. Collagen particles in a unidirectional or bidirectional gradient are able to promote the linear migration of bone marrow stem cells or NIH‐3T3 fibroblasts along the direction of increasing particle density. In the case of particles made of a mixture of collagen and fibronectin, their deposition in a bidirectional gradient promotes the migration of Schwann cells from two opposite sides toward the center, matching the scenario in peripheral nerve repair. As for a mixture of collagen and laminin, the particles in a unidirectional gradient promote the extension of neurites from embryonic chick dorsal root ganglion in the direction of increasing particle density. Taken together, the scaffolds featuring a combination of uniaxially aligned nanofibers and biomacromolecular particles in density gradient can be applied to a range of biological studies and biomedical applications.

How to cite this publication

Jiajia Xue, Tong Wu, Jichuan Qiu, Sarah Rutledge, Michael L. Tanes, Younan Xia (2020). Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. , 30(40), DOI: https://doi.org/10.1002/adfm.202002031.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adfm.202002031

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access