0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract A simple method based upon masked electrospray is reported for directly generating both unidirectional and bidirectional density gradients of biomacromolecular particles on uniaxially aligned nanofibers. The method has been successfully applied to different types of biomacromolecules, including collagen and a mixture of collagen and fibronectin or laminin, to suit different types of applications. Collagen particles in a unidirectional or bidirectional gradient are able to promote the linear migration of bone marrow stem cells or NIH‐3T3 fibroblasts along the direction of increasing particle density. In the case of particles made of a mixture of collagen and fibronectin, their deposition in a bidirectional gradient promotes the migration of Schwann cells from two opposite sides toward the center, matching the scenario in peripheral nerve repair. As for a mixture of collagen and laminin, the particles in a unidirectional gradient promote the extension of neurites from embryonic chick dorsal root ganglion in the direction of increasing particle density. Taken together, the scaffolds featuring a combination of uniaxially aligned nanofibers and biomacromolecular particles in density gradient can be applied to a range of biological studies and biomedical applications.
Jiajia Xue, Tong Wu, Jichuan Qiu, Sarah Rutledge, Michael L. Tanes, Younan Xia (2020). Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. , 30(40), DOI: https://doi.org/10.1002/adfm.202002031.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202002031
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access