0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA two-step template approach was demonstrated for preparation of the three-dimensional ordered mesoporous carbon sphere arrays. The ordered macroporous silica skeleton was formed from silicon alkoxide precursor templating around polystyrene (latex) spheres, and removal of the polystyrene spheres. These preforms as hard templates were infiltrated with a solution mixture of amphiphilic triblock copolymer PEO-PPO-PEO and soluble resol. By combining evaporation-induced surfactant-templating organic resol self-assembly with thermosetting, carbonization and hydrofluoric acid extraction of silica, the obtained mesoporous carbon has a pore size of 10.4 nm, interconnected window size of about 60 nm, surface area of 601 m2/g and pore volume of 1.70 cm3/g. The electrochemical properties as an electrode material for supercapacitor applications were investigated in nonaqueous electrolyte. They show rectangular-shaped cyclic voltammetry curves over a wide range of scan rates even up to 200 mV/s between 0 and 3 V, and deliver a large capacitance of 14 µF/cm2 (84 F/g), and good cycling stability with capacitance retention of 93% over 5000 cycles.
Haijing Liu, Wang-jun Cui, Jin Linghua, Congxiao Wang, Yongyao Xia (2009). Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry, 19(22), pp. 3661-3661, DOI: 10.1039/b819820a.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Materials Chemistry
DOI
10.1039/b819820a
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access